Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(2): e2300510, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059838

RESUMO

SCOPE: Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS: Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION: Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.


Assuntos
Hepatopatias , Verrucomicrobia , Humanos , Verrucomicrobia/fisiologia , Hepatopatias/etiologia , Inflamação/microbiologia , Etanol/efeitos adversos , Akkermansia
2.
Part Fibre Toxicol ; 20(1): 27, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443115

RESUMO

BACKGROUND: Edible gold (Au) is commonly used as a food additive (E175 in EU) for confectionery and cake decorations, coatings and in beverages. Food-grade gold is most often composed of thin Au sheets or flakes exhibiting micro- and nanometric dimensions in their thickness. Concerns about the impact of mineral particles used as food additives on human health are increasing with respect to the particular physico-chemical properties of nanosized particles, which enable them to cross biological barriers and interact with various body cell compartments. In this study, male and female mice were exposed daily to E175 or an Au nanomaterial (Ref-Au) incorporated into food at relevant human dose for 90 days in order to determine the potential toxicity of edible gold. RESULTS: E175 or Ref-Au exposure in mice did not induce any histomorphological damage of the liver, spleen or intestine, nor any genotoxic effects in the colon and liver despite an apparent higher intestinal absorption level of Au particles in mice exposed to Ref-Au compared to the E175 food additive. No changes in the intestinal microbiota were reported after treatment with Ref-Au, regardless of sex. In contrast, after E175 exposure, an increase in the Firmicutes/Bacteroidetes ratio and in the abundance of Proteobacteria were observed in females, while a decrease in the production of short-chain fatty acids occurred in both sexes. Moreover, increased production of IL-6, TNFα and IL-1ß was observed in the colon of female mice at the end of the 90-day exposure to E175, whereas, decreased IL-6, IL-1ß, IL-17 and TGFß levels were found in the male colon. CONCLUSIONS: These results revealed that a 90-day exposure to E175 added to the diet alters the gut microbiota and intestinal immune response in a sex-dependent manner in mice. Within the dose range of human exposure to E175, these alterations remained low in both sexes and mostly appeared to be nontoxic. However, at the higher dose, the observed gut dysbiosis and the intestinal low-grade inflammation in female mice could favour the occurrence of metabolic disorders supporting the establishment of toxic reference values for the safe use of gold as food additive.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Feminino , Animais , Ouro , Interleucina-6 , Sistema Imunitário , Aditivos Alimentares/toxicidade
3.
Biomolecules ; 10(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371482

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Contaminação de Alimentos , Hepatócitos/metabolismo , Homeostase , Humanos , Inflamação , Resistência à Insulina , Fígado/metabolismo , Cirrose Hepática , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Fatores de Risco
4.
Sci Rep ; 10(1): 6489, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300166

RESUMO

Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Obesidade/metabolismo , PPAR alfa/deficiência , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hepatócitos/imunologia , Humanos , Metabolismo dos Lipídeos/imunologia , Lipidômica , Fígado/citologia , Fígado/imunologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/imunologia , Obesidade/patologia , PPAR alfa/genética
5.
Microbiome ; 7(1): 72, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060614

RESUMO

BACKGROUND: The World Health Organization classified processed and red meat consumption as "carcinogenic" and "probably carcinogenic", respectively, to humans. Haem iron from meat plays a role in the promotion of colorectal cancer in rodent models, in association with enhanced luminal lipoperoxidation and subsequent formation of aldehydes. Here, we investigated the short-term effects of this haem-induced lipoperoxidation on mucosal and luminal gut homeostasis including microbiome in F344 male rats fed with a haem-enriched diet (1.5 µmol/g) 14-21 days. RESULTS: Changes in permeability, inflammation, and genotoxicity observed in the mucosal colonic barrier correlated with luminal haem and lipoperoxidation markers. Trapping of luminal haem-induced aldehydes normalised cellular genotoxicity, permeability, and ROS formation on a colon epithelial cell line. Addition of calcium carbonate (2%) to the haem-enriched diet allowed the luminal haem to be trapped in vivo and counteracted these haem-induced physiological traits. Similar covariations of faecal metabolites and bacterial taxa according to haem-induced lipoperoxidation were identified. CONCLUSIONS: This integrated approach provides an overview of haem-induced modulations of the main actors in the colonic barrier. All alterations were closely linked to haem-induced lipoperoxidation, which is associated with red meat-induced colorectal cancer risk.


Assuntos
Aldeídos/metabolismo , Colo/metabolismo , Heme/administração & dosagem , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Microbiota , Animais , Heme/metabolismo , Homeostase , Inflamação , Peróxidos Lipídicos/metabolismo , Masculino , Testes de Mutagenicidade , Ratos , Ratos Endogâmicos F344
6.
FASEB J ; 33(6): 7126-7142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30939042

RESUMO

Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)-/-] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet. Cholecystokinin (Cck) mRNA and protein expression in the ileum and cecum, as well as preproglucagon (Gcg) and neurotensin (Nts) mRNA expression in the cecum, increased in KHK-F mice. In KHK-F mice, triple-label immunohistochemistry showed major up-regulation of CCK in enteroendocrine cells (EECs) that were glucagon-like peptide-1 (GLP-1)+/Peptide YY (PYY-) in the ileum and colon and GLP-1-/PYY- in the cecum. The cecal microbiota composition was drastically modified in the KHK-F in association with an increase in glucose, propionate, succinate, and lactate concentrations. Antibiotic treatment abolished fructose malabsorption-dependent induction of cecal Cck mRNA expression and, in mouse GLUTag and human NCI-H716 cells, Cck mRNA expression levels increased in response to propionate, both suggesting a microbiota-dependent process. Fructose reaching the lower intestine can modify the composition and metabolism of the microbiota, thereby stimulating the production of CCK from the EECs possibly in response to propionate.-Zhang, X., Grosfeld, A., Williams, E., Vasiliauskas, D., Barretto, S., Smith, L., Mariadassou, M., Philippe, C., Devime, F., Melchior, C., Gourcerol, G., Dourmap, N., Lapaque, N., Larraufie, P., Blottière, H. M., Herberden, C., Gerard, P., Rehfeld, J. F., Ferraris, R. P., Fritton, J. C., Ellero-Simatos, S., Douard, V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism.


Assuntos
Ceco/metabolismo , Colecistocinina/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/metabolismo , Animais , Ceco/efeitos dos fármacos , Linhagem Celular , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Íleo/efeitos dos fármacos , Camundongos , Camundongos Knockout
7.
Environ Health Perspect ; 126(6): 067007, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950287

RESUMO

BACKGROUND: Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES: We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS: A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS: To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.


Assuntos
Fungicidas Industriais/toxicidade , Transtornos do Metabolismo de Glucose/induzido quimicamente , Inseticidas/toxicidade , Receptores Citoplasmáticos e Nucleares/genética , Animais , Animais Geneticamente Modificados , Peso Corporal/efeitos dos fármacos , Receptor Constitutivo de Androstano , Exposição Dietética , Fígado Gorduroso/induzido quimicamente , Feminino , Glutationa/metabolismo , Inativação Metabólica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Testes de Toxicidade Crônica
8.
Sci Rep ; 6: 36937, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853235

RESUMO

Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes.


Assuntos
PPAR gama/metabolismo , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/fisiologia , Animais , Restrição Calórica/métodos , Mucosa Intestinal/metabolismo , Lipólise/fisiologia , Fígado/metabolismo , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo
9.
NPJ Biofilms Microbiomes ; 2: 16003, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721242

RESUMO

Exposure to environmental chemicals has been linked to various health disorders, including obesity, type 2 diabetes, cancer and dysregulation of the immune and reproductive systems, whereas the gastrointestinal microbiota critically contributes to a variety of host metabolic and immune functions. We aimed to evaluate the bidirectional relationship between gut bacteria and environmental pollutants and to assess the toxicological relevance of the bacteria-xenobiotic interplay for the host. We examined studies using isolated bacteria, faecal or caecal suspensions-germ-free or antibiotic-treated animals-as well as animals reassociated with a microbiota exposed to environmental chemicals. The literature indicates that gut microbes have an extensive capacity to metabolise environmental chemicals that can be classified in five core enzymatic families (azoreductases, nitroreductases, ß-glucuronidases, sulfatases and ß-lyases) unequivocally involved in the metabolism of >30 environmental contaminants. There is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host. Conversely, environmental contaminants from various chemical families have been shown to alter the composition and/or the metabolic activity of the gastrointestinal bacteria, which may be an important factor contributing to shape an individual's microbiotype. The physiological consequences of these alterations have not been studied in details but pollutant-induced alterations of the gut bacteria are likely to contribute to their toxicity. In conclusion, there is a body of evidence suggesting that gut microbiota are a major, yet underestimated element that must be considered to fully evaluate the toxicity of environmental contaminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA